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Introductions

Synopsis
Recently, survival television has taught us to go downhill to water and downstream to civilization.  But 
in 1956, Richard Bellman [2] asked simply: “What is the best path to follow in order to escape a forest 
of known dimensions?”  Results for a variety of forests have been obtained, but a general solution 
appears elusive and likely unapproachable.  The problem was originally posed for unbounded regions – 
the infinite strip between parallel lines and the half-plane with known distance from the boundary – but 
bounded regions have also been of interest.  This paper presents the branch of results leading to 
solutions for regular polygonal forests, as well as some related material.  Significant proofs are restated, 
and in a few cases unpublished or unaccessed results are reconstructed.  As an extension, results are 
examined in relation to isosceles triangles.

(Let us grant that the forest setting seems a bit contrived.  A lost hiker has a precise map but no 
compass or landmarks, yet can follow a course involving precise distances and angle measures. 
Perhaps instead we could imagine a mobile robotic unit equipped only with proximity sensors which 
must orient itself within a known space by finding a wall.)

With the exception of the half-plane, which was not investigated for this paper, known optimal escape 
paths are of three types.

• A broad class of forests known as “fat” are best escaped by a linear path.  All regular polygonal 
forests above the triangle are “fat”.

• Another class which might be termed “skinny” are best escaped by following a wishbone-
shaped path due to Zalgaller.

• Some isosceles triangles including the equilateral are best escaped by a zigzag path due to 
Besicovitch.

However, the classification of forests is far from complete.  There are forests, for instance, which are 
not “fat”, yet their optimal solutions are linear.  And there are unsolved forests for which it is known 
that none of these three paths is optimal.
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Definitions and Notation

Points and Lines
• The distance between points A and B is written  A , B.
• The line segment between points A and B is written A B and its length is written

∣A B ∣=  A , B.
• The line through points A and B is written A B .

Forests
• A forest is a closed, convex planar set.
• A forest is bounded if there is an upper bound to the distance between pairs of points in the 

forest, and the least upper bound is called the diameter.  For bounded forest F, we write
Diam F  = sup{ A ,B : A , B∈F }.  Since forests are closed, the least upper bound will be 

achieved and we may speak of the diameter as the maximum separation between points, which 
will necessarily occur only between boundary points.

• A diameter of F is any line segment between maximally separated points of a bounded forest.

Paths
• A path is a continuous and rectifiable planar arc.

• The path with endpoints A and B is written A B .  Additional points in sequence may be 
specified within the path, e.g.AC X D B .

• Path lengths are written ℓP  , ℓA B , etc.
• Point M is the “midpoint” of path A B if M lies on A B and ℓA M  = ℓM B.
• Path A B is “convex”, distinguished by writing A B , if adding the line segment BA to form
A B A encloses a convex region.  Alternately, a simple path is convex if it lies on its convex 

hull.
• A “diameter path” for a bounded forest is a line segment of length equal to the forest diameter. 

Covers and Escapes
• Forest F “covers” path P if it contains a congruent, orientation-preserving copy of P. 

Alternately, F covers P if P can be made to fit into F by translation and/or rotation.
• A forest is called an “L-cover” if it covers every path of length L.
• Path P is an “escape path” for forest F if the interior of F does not cover P.  Alternately, P 

escapes F if P cannot be placed in F without intersecting F's boundary.
• If forest F has an escape path, its “escape length” is the greatest lower bound of escape path 

lengths, written ℓF  = inf {ℓP ∣ P escapes F }, and an escape path P for forest F is 
“optimal” if ℓP  = ℓF  .
• This definition does permit multiple optimal escape paths, and at least one such case exists.
• This choice for optimality is arbitrary.  Other possible definitions, such as minimum 

expected length, generally have not been investigated.
• Note that the plane is a forest without escape paths.
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The Worm Problem
In 1966, Moser [11] posed a related problem which roughly asks: “What's the best-shaped hammer for 
smashing one-inch worms?”  More carefully, Moser asks for the convex shape of smallest area which 
covers all planar arcs of unit length.  Here a planar arc of unit length is called a worm, and a planar 
region which is a unit-cover is also called a worm cover.  As of 2005, the minimum area known for a 
convex worm-cover is 0.27381, though a non-convex cover of area 0.26044 is given in [18].  Worm 
problem results are sometimes useful in establishing lower bounds for escape lengths and thereby 
proving an escape path to be optimal.

Understanding the Problem – The unit square
Before we tackle a problem, we should make sure that we understand its definition and have some 
sense of how it works.  So let's suppose we are lost in a square forest one unit wide.  If we know where 
we are and have a compass handy, we can find the shortest path to an edge (Figure 1).

If we have no knowledge of our location but do have a compass, we can walk parallel to one of the 
sides and and be guaranteed an exit path no longer than one unit, even if it turns out we walked away 
from the nearest side (Figure 2).

But without a compass, a straight unit walk is not an escape path because we might be walking at an 
angle to the forest boundary (Figure 3).  This is the situation in the Bellman Forest Problem.
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Here are some successful escape paths from a unit square:

• (Figure 4) A unit square:  It would be a very strange closed set whose boundary could be 
contained entirely in its interior.  A half-plane might do the trick, but in general a bounded 
region won't fit inside itself.  So we have an escape path of length four – the perimeter of the 
unit square.  The plan would be to walk one unit forward, turn 90 degrees right, walk one unit, 
and so on.

• (Figure 5) A circle with diameter one:  This will also work, and has a length of ≈ 3.1416 ,
an improvement over the square. The ambitious reader might consider circles of greater 
diameter, then find required length as a function of diameter and look for a minimum. 
Mathematicians, of course, ignore the difficulty of walking in a perfect circle, just as we've 
ignored the problem of bumping into trees.

• (Figure 6) Sides of a square:  Someone might note that the fourth side of the square will never 
be needed to effect an escape, so we have a solution of length 3, another improvement.  More 
consideration might reveal that no more than two sides are actually needed, for an escape length 
of 2.

• (Figure 7) A straight line (segment): Certainly a segment of length 10 would be an escape path, 
but a little consideration shows that the square cannot contain a segment of length greater than
2 ≈ 1.414 .  This is the nicest result so far.
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We might be willing to conjecture that the straight line is the best escape path from a square forest.  We 
then face two challenges:

• Can we prove that our conjecture is correct?  
• And, if so, can it be generalized to handle other forests?  

A note about escape paths
Frequently we will see escape paths placed so as to contact the boundary of the forest more than once. 
For example, in Figure 8, the escape pathW X Y Z begins on the boundary and contacts it twice 
more before its endpoint.  However, if the final leg of the path were any shorter (Figure 9), the path 
could be rotated and translated slightly such thatW X Y Z ' would no longer “escape” the forest 
(Figure 10).  Thus it is typical that escape paths are positioned having multiple intersections with the 
forest boundary.
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General Arguments

We begin with some basic arguments which will be of repeated use.

Proposition 1: For any bounded forest F, a diameter path is an escape path.

If a line segment AB with ∣ A B ∣= Diam F  is not an escape path, then the interior of F covers AB. 
That is, a congruent copy A ' B' ≅ A B exists with endpoints A' and B'  in the interior of F.  But then 
there are open −neighborhoods of A' and B' lying wholly in the interior of F, and so there must 
exist points A'' and B'' in the interior with  A' ' , B ' '  = Diam F 2 , a contradiction.  Therefore 
a diameter path is always an escape from a bounded forest.

Proposition 2 (The Escape Bound):  The length of an escape path is an upper bound for the escape 
length of that forest.  That is, if path P escapes forest F, ℓF  ≤ ℓP .  In particular, if F is bounded,
ℓF  ≤ Diam F .

Proposition 3 (The Cover Argument): If forest F is an L-cover, ℓF  ≥ L , and so an escape path of 
length L is optimal.

If F covers paths of length L, its interior covers shorter paths.  So L is a lower bound for the length of 
escape paths, and an escape path of length L is optimal.  

Proposition 4 (The Embedding Argument): If forest F is contained in forest G, then ℓF  ≤ ℓG.  
That is, the escape length of F is a lower bound for the escape length of G, and the escape length of G 
is an upper bound for the escape length of F.

Corollary 5: A forest containing an L-cover is also an L-cover.
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Linear Solutions

The Circular Disk (Gross, 1955)

Since the Forest Problem permits any continuous path, it is not obvious where to begin.  However, in 
1955, O. Gross, got the ball rolling.  In A Search Problem Due to Bellman [7], he concluded that the 
optimal escape path from a circular disk is a line segment equal in length to the diameter.  It is 
relatively easy to show that the line segment is an optimal escape path.  Then it is intuitively obvious, 
but not quite so easy, to show that it is uniquely optimal.

Proposition 6: A diameter path is the optimal escape from a circular disk.

First we show that a circular disk covers all arcs of diameter length.  Let F be a forest bounded by a 
circle of radius r, and P a path.  Let M be the midpoint of P and place M on the center of the circle.  If 
P intersects the circle at some point A, then M , A = r . Since A lies on one semi-path of P, the 
length of the semi-path containing A is at least r, and the length of P must be at least 2 r , the 
diameter of the circle.  Therefore F covers all paths of diameter length, and so Diam F  ≤ ℓF .  
But since a diameter path is an escape path of diameter length, it must be optimal.

Next we show that a diameter path is uniquely optimal.  LetA M B be any path with
ℓA M B = Diam F  and midpoint M.  If A M and M B are non-collinear line segments of 

length r, we can easily coverA M B with the interior of F.  Simply place M at the center of the circle 
and then move it along the bisector of ∢A M B toward the major arc defined by AB.
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If one of the semi-paths, say A M is not linear, then for every point p ∈A M ,  p ,M   r .  
Then we can find a point M ' ≠ M on M B such that  p , M '   r ∀ p ∈A M ' .  If we place

M ' at the center of the circle, A M ' cannot intersect the circle since none of its points are a 
distance of r from the center, and M ' B cannot intersect the circle since now ℓM ' B  r .  Thus 
a line segment is the unique optimal escape from a circular forest.
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The “Fat” Forest  (Gerriets and Poole, 1973)

Can similar reasoning determine other forests with optimal escape paths which are linear?  In 1973, 
George Poole and John Gerriets published a brief note [13] regarding worm covers.  This was followed 
the next year by a more thorough explanation [6].

The result is pleasantly straightforward, both in statement and proof.  In the authors' words, “We must 
admit that even though the result is rather striking the proof is quite simple.” ([6], p. 37)  Yet simplicity 
does not imply that the result was obvious, so if only for the discovery Gerriets and Poole certainly 
deserve their credit.  Their argument in [6] is so concise that it is reproduced in its entirety along with 
the original accompanying figure.  Where it seems useful for clarification we add a few footnotes.

Proposition 7: (Theorem 1 in Gerriets and Poole)

The closed region whose boundary is a rhombus with major diagonal L and minor diagonal
L /3 covers any arc of length L.

Proof.  Let  be any arc of length L with midpoint O which divides  into two subarcs 
and  .  ABCD will denote the rhombus described in the theorem with BD having length

L /3 .  Suppose first that there is an orientation of  with O on BD, all points of  on or 
above angle ABC, and both  and  contiguous with angle ABC.(1)  Suppose also that 
meets BC at point P and meets DC at point Q with P lying between O and Q.(2)  Construct BS 
and PR perpendicular to DC and construct PT and PV perpendicular to BS and BD, respectively. 
Then the length of  ≥OPPQ≥ VPPR= BTTS = L /2 which shows that  cannot 
cross DC.(3)  If Q lies between O and P, the argument is similar by symmetry.  Similarly,  is 
covered by the rhombus in this case.

Secondly, suppose in all possible orientations of  with O on BD as described above that only 
one arc, say  , is contiguous with angle ABC.(4)  Therefore, in any of these positions, as 
argued above, the rhombus covers  and by symmetry of the rhombus and the assumption 
that  cannot touch angle ABC,  cannot pass through angle ADC.  For suppose  even 
so much as touches angle ADC, then there is an orientation where it also touches angle ABC 
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(since the figure is symmetric about line AC), contrary to the conditions of this case.  Thus the 
rhombus covers all arcs of length L.

Notes (in case the above was not all “intuitively obvious to the casual observer”):
(1) Clearly it is possible to position  above ∢ABC with O on BD, and at least one of  and

 contiguous with the angle.  This does not require that the subarcs be contiguous with 
segments AB and BC, merely the angle they describe.  It seems most likely that some 
orientation will place both subarcs contiguous with the angle.  However, a simple 
counterexample would be to have  lie entirely in the convex hull of  .

(2) Since  lies entirely above ∢ABC , if it intersects BC but not DC it cannot escape from the 
right side of the rhombus.  And if  contacts both segments it must do so in some order.  In 
the case where  intersects both segments at C, clearly  has length at least L /2.

(3)  ≥OPPQ≥ VPPR = BTTS = L/2 : OP has greater length than the perpendicular 
VP, and likewise PQ ≥ PR .  Clearly RP = ST .  Since m∢VBP = m∢BCS = 60° ,

m∢BPV =m∢CBS = 30° , so BPV  PBT ⇒ PV = BT .

Gerriets and Poole do not discuss the possibility that  intersects BC and then exits the left 
side of the rhombus.  However, this is not a problem.  Since the arc lies above ∢ABC , to exit 
the rhombus it would be necessary to intersect AD, and all points on BC are at least L /2 away 
from AD.

(4) It would appear the authors are only addressing the situation where one particular subarc, say
 , never intersects ∢ABC , perhaps leaving themselves open to a counterexample in 

which some orientations have  intersecting ∢ABC and some have  intersecting
∢ABC , but no orientations where both subarcs intersect the angle.  The situation, however, 

will not arise.  For each rotation of  with O on BD, we can slide O along BD until something 
contacts ∢ABC but nothing passes below it.  Suppose this is a point X on  .  As we rotate
 counterclockwise from this orientation, X will remain contiguous with line BD until some 

other point of the arc intersects the angle to the left of X and continued rotation forces X off the 
angle.  (This follows the Wingwalker's Rule: “Never let go of what you got ahold of 'til you got 
ahold of something else.”)  Thus if  intersects the angle in some rotations and  in others, 
there must exist a transitional orientation where both intersect the angle.

Notice that in none of this do the authors discuss escape paths, though their proof clearly demonstrates 
an escape path in order to achieve a contradiction.  All they have claimed is that the rhombus is an L-
cover, which we recognize to mean that no escape path may have length less than L.  However, since a 
line segment of length L is a diameter path, it is indeed an escape path.
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- Implications -

The utility of this theorem relies on the embedding argument.  Any forest containing such a rhombus is 
clearly also an L-cover, and, if the forest has diameter L, then a diameter path is an optimal escape.

Definition (The Fat Forest):
“Call a compact, convex set X fat if it contains points P and Q so that (a) PQ is the diameter of 
X and (b) the 60° rhombus R(PQ) with longer diagonal PQ fits in X.”  (Finch & Wetzel [5], p. 
647)

Proposition 8: “The escape length of a fat forest is its diameter.”  ([5], p. 647)  The conclusion is 
immediate – the fat forest covers all arcs of diameter length, so a diameter path is optimal.

Fortunately, quite a number of forests are fat.  Most notably, every regular polygonal forest with at 
least four sides is fat and is therefore best escaped by a straight path.  In particular, this establishes our 
conjecture for the unit square.  Circles are fat, but we already had a proof regarding them.
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The Zalgaller Solution

Minimum Path of Unit Width  (Zalgaller, 1961)

Part of Bellman's initial problem asked for an escape path from an infinite strip – two parallel lines at 
distance w and the planar region between them.  Clearly a straight walk is no use.  Two perpendicular 
legs, each of length w 2, will find a border after a walk of no more than 2.82843 w .  Even better, 
two legs of an equilateral triangle with height w will succeed in no more than 2.30941 w .  What 
would an optimal path look like?

To the reader: This discussion of the Zalgaller path is, for the most part, a restatement of the 
proof found in Adhikari and Pitman [1].  Where other works are used they will be cited. 
Attempts to simplify or generalize their argument will be noted.  

Definition: For a path P, define wP  as the “distance between supporting parallel lines at an angle 
of  to the x-axis”.  Define the “path width” by w a  = inf

0≤ ≤ 
w a .  In other words, the width of 

a path is the minimum separation between parallel lines capable of enclosing the path.  Similarly, for 
any bounded forest F we define the forest width w F  as the minimum distance between parallel 
lines tangent to the forest.  It is clear that the width of a path or forest is the same as the width of its 
convex hull.

For simplicity, we choose our forest as the region between lines one unit apart, so our goal is to find the 
shortest path of unit width.  According to Finch & Wetzel [5],

“...the solution was described in 1961 by V. A. Zalgaller....It was rediscovered in 1968 by 
Schaer, who called it the broadworm and provided a careful proof of its uniqueness; it was 
rediscovered again in 1986-87 by Klötzler and  Klötzler and Pickenhain, who called it the 
universal escape path; and it was rediscovered yet again in 1989 by Adhikari and Pitman, who 
called it the caliper.”

The Zalgaller path  appears in Figure 17.  Its dimensions are given in Wetzel [17] based on Schaer 
[14]:

• Define the critical angles = arcsin[ 1
6
4

3
sin 1

3
arcsin 17

64 ]≈ 0.290046 ,

 = arctan 1
2

sec≈ 0.480931 , and  = 
2
−  − 2≈ 0.318888.

• The segment AB , not part of the path, has  a length of sec ≈ 1.043590 .
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• The right side of the path RSTB is composed of arc ST and segments RS and TB ,
where R is one unit above the midpoint of AB and ST is a circular arc of radius 1 
centered at A .  The left sideAPQR is symmetric to the right side.

• The path has a total length of ℓ  =  = 2  tantan ≈ 2.278291644 , just slightly 
better than our result based on the equilateral triangle.

Proposition 9: The Zalgaller path is the shortest path of unit width.

To show that Zalgaller is optimal, we first establish that  is the shortest convex path of unit width. 
Then we argue that it is the shortest among all paths.

Proposition 9.1: The Zalgaller path is the shortest convex path of unit width.

Suppose arc A B is the shortest convex arc of unit width.  Since it is convex, the entire arc must lie on 
one side of the line A B .  Without loss of generality, we can orient the arc in the first quadrant of an 
xy-coordinate system such that the endpoints are on the x-axis with point A = a , 0 to the left of

B = b , 0 , and the arc A B tangent to the y-axis at Q =0,c.   Let w denote greatest x-
coordinate of any point on the arc with a tangent point R =w ,d  , and let h be the height, or 
greatest y-coordinate, of the arc.  Since the arc has width at least one, w ≥ 1 and h ≥ 1 (Figure 18).

Clearly, if a  0 , we could replace the arc A Q with vertical line segment A ' Q where
A ' = 0,0 to obtain a shorter convex arc of the same width.  Similarly, if b  w , we could obtain 

a shorter arc with B ' = w ,0 .  So we may conclude that in the shortest convex arc, A = 0 , 0
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and B = w ,0.

Next we consider a construction with point A at the origin, point B at w , 0 for some w ≥ 1 , a 
horizontal line A ' B' at unit height above AB, and open discs Disc(A) and Disc(B) of unit radius 
centered at A and B respectively (Figure 20).

We claim that paths so aligned have the following characteristics: ([1], p. 312)

“Lemma 1 : For a convex arc A B above A B  with ∣ A B ∣≥ 1 , width A B ≥ 1 if and only if  
the following three conditions all hold:  

1. A B intersects A ' B' at some point F.
2. A F does not intersect Disc(B).
3. F B does not intersect Disc(A).” 

⇒ Suppose the three conditions hold.  To show that the arc has width at least one, it is necessary to 
show that the arc cannot be contained strictly between parallel lines one unit apart.  Our construction 
already assumes horizontal width of at least one unit, and the first condition guarantees a vertical unit 
width.  

Let L1 and L2 be down-sloping parallel lines, one unit apart, with L1 the upper line.  Since the 
path does not extend below or left of point A, we may translate the path so that A lies on L2 , which 
will place L1 tangent to the unit circle centered at A.  If L1 passes between A and B, the continuity 
of A B guarantees that it intersects L1 .  Thus we only need to consider the case where L1

intersects A B to the right of B (Figure 21).  

Ward - 02/21/08, 01:07:31 PM Page 18 of 53

Figure 19

Figure 20



If F lies on or to the right of L1 , then F B clearly intersects L1 .  On the other hand, if F lies to 
the left of L1 (labeled F ' in the figure), then F ' B cannot remain below L1 without 
intersecting open Disc(A), and so must intersect L1 .  Thus A B has at least unit width measured by 
down-sloping lines.  The same can be shown for up-sloping lines by aligning them with point B and 
Disc(B).  Therefore, when the three conditions hold, the path has unit width.

⇐ Suppose A B has unit width.  Clearly the path must intersect the line one unit above A B ,
namely A ' B' , so the first condition holds.  Assume, for the sake of contradiction, that A F
intersects Disc(B).  Since A and F cannot lie in open Disc(B), there must exist points C and D lying on 
the unit arc centered at B such that A F =AC D F and all points other than C and D of C D lie 
within Disc(B).  Then, to preserve convexity, the line segment CD must lie in the interior of the convex 
hull of A B .

Now consider line L1 parallel to C D and tangent at point E to the unit circle centered at B.  To 
maintain unit width, A F must contain some point G on L1 .  Since L1 lies outside open Disc(B), 
G is not on C D , and so must lie on A C or D F .  Suppose G is on D F , as in Figure 22. 
Then to  preserve convexity, the line segment CG must intersect the unit circle centered at B 
somewhere between C and D, and that point must lie within the convex hull of A B , which can only 
reasonably occur if the intersection lies on C D , contradicting our assumption.  A corresponding 
problem arises if G  is on A C . Thus A F cannot intersect Disc(B), and so the three conditions 
hold.
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To find the optimal path satisfying these conditions, first we fix some d =∣ A B∣ and some point F 
on A ' B' .  If the path A F B has unit width, by the lemma, A F does not intersect Disc(B) and
F B does not intersect Disc(A).  If line segments AF or FB do not intersect Disc(B) or Disc(A), 

respectively, they are the shortest choices for that portion of the path.  The minimum base width d at 

which two line segments can be used occurs when d = 2
3

and F is the midpoint of A ' B' , with 

ℓA F B = 212 d
2 

2

= 2 4
3 = 4 3

3 ≈ 2.3094 . (Figure 23.)  Clearly, when d  2
3

, the path 

will be no shorter, so we need only consider values where 1≤ d ≤ 2
3

.
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For d  2
3

, it will be necessary for at least one of A F and F B to be non-linear in order to 

avoid intersecting the open discs.  This is best accomplished by following a portion of the unit arc 
surrounding the disc, then using line segments to minimize the remaining distance.  Convexity requires 
that these line segments lie on lines tangent to the discs.

We can calculate the angles involved and therefore the path length.  Let F =  xF ,1 for some
0 ≤ x F ≤ d , and construct a candidate path  * as in Figure 24.  Since ∣ BC ∣=∣ A H ∣= 1 ,

= = cos−1 1
d  .  Similarly, since ∣ B D∣=∣ AG ∣= 1 ,

 = cos−1 1
∣F B∣= cos−1 1

1d−x F
2 and  = cos−1 1

∣ A F ∣= cos−1 1
1 xF

2
.  Then since

tan ∢B A F  = 1
d− xF

,  = tan−1 1
d− xF −− , and similarly  = tan−1 1

x F −− .

We can then compute the path length.  Since ∣ A F ∣=1x F
2 , ∣D F ∣= ∣A F ∣2−1 =  x F

2 = xF ,
and similarly, since ∣ F B∣=1d−xF 

2 , ∣F G∣= ∣F B ∣2−1= d−xF 
2= d− xF .  Thus,

∣D F ∣∣ F G∣= d .  Further, ∣ AC ∣= ∣H B∣= d 2−1 .  So ℓ * = * is equal to
2d 2−1d .

It seems reasonable that for any given d, the optimal choice for F is the midpoint of A ' B' .  Adhikari 
and Pitman argue that reflecting F B about A ' B' shows the path is clearly minimized when DF 
and the reflection of FG are collinear.  We can also approach the proof via calculus.
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Digression – a solution via calculus
To minimize f X F = 

* for any given d, we must minimize the non-constant value  , which can be 
expressed as a function

 xF = tan−1 1
xF
 tan−1 1

d−xF
− cos−1 1

1d−xF 
2
− cos−1 1

1xF
2
−2cos−1 1

d
.  Differentiating the 

summands, we get

•

d
dxF

tan−1 1
xF
=  1

1 1
xF

2 −1
xF

2 =− 1
xF

21
,

•

d
dxF

tan−1 1
d−xF

=  1

1 1
d−xF

2  −1
d−xF

2 −1 = 1
d−xF

21
,

•

d
dxF −cos−1 1

1d−x F
2  = −1 −1

1− 1
1−d−xF

2

 −1⋅2 d−xF −1

2 1d−xF 
21d−xF 

2 
=

d−xF

 1d−xF
2−1 1d−xF

2

=
d−xF

∣d−xF ∣1d−xF
2
= 1

1d−xF
2

,

•

d
dxF −cos−1 1

1xF
2  = −1−1 

1− 1
1−xF

2

 −1⋅2 xF

21xF
2 1xF

2  
= −

x F

1xF
2−1 1xF

2 

= −1
1xF

2

,

• and
d

dxF
cos−1 1

d
= 0 .

Thus
d

dxF
  xF =

2
1d−xF

2 −
2

1xF
2 .  We note immediately that when xF =

d
2

, xF = d−xF ,

and
d

dxF
= 0.   Since

d 2

dxF
2   xF =

−2⋅2 d−xF−1
1d−xF 

22
−
−2⋅2 xF

1xF
2 2
=

4 d−xF
1d−xF

22


4 xF

1xF
2 2

 0 , our path is optimal 

when symmetric, and indeed xF =
d
2

.

Substituting, we get d  = 2 tan−1 2
d
− cos−1 2

 4d 2
− cos−1 1

d  , and so for a given d,

g d = ℓ *= d2d 2−1 tan−1 2
d
− cos−1 2

4d 2
− cos−1 1

d .  Then
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g ' d  = 12[ d
d 2−1

− 2
d 24

− 2
d 24

− 1
d d 2−1]

= 1 2 d
d 2−1

− 8
d 24

− 2
d d 2−1

= 1 2d 2−1
d

− 8
d 24

.

A numerical solution for g ' d  = 0 yields an optimal value at d ≈ 1.043590110.

Digression – Trigonometric Solution of the Cubic

Instead of the numerical solution, Wetzel [17] gives d = sec where  = sin−1[164
3

sin 1
3

sin−1 17
64 ],

based on “expressions that arise from the trigonometric solution of the cubic that appears in an extremum 
problem.”  How does that work?

From Figure 24, is apparent that sin = d 2−1
d

and cos2 = 1−sin2 = 1
d

, so

g ' d  = 12sin− 8

 1
1−sin2

4
= 8sin 3−4sin 2−10 sin3

4 sin2−5
,

and we may solve for

8sin3−4sin 2−10 sin 3 = 0 or just sin3−1
2

sin2−5
4

sin 3
8
= 0.  We can remove the second-

degree term by the substitution sin = y 1
6

, yielding 0 = y3−4
3

y 34
216

.  Here's where the trigonometry 

comes in.  Following Lambert [9], we seek the identity sin3−3
4

sin1
4

sin 3 = 0.  By the substitution

y = 4
3

x , we get 0 = 64
27

x3−16
9

x 17
108

, and clearing the leading coefficient gives 0 = x 3−3
4

x 17
256

.  

This will occur when x= sin and 1
4

sin 3= 17
256

.  So we conclude that sin 3 = 17
64 ⇒

3= sin−1 17
64 ⇒ = 1

3
sin−1 17

64 ⇒ x= sin= sin 1
3

sin−1 17
64  ⇒

y= 4
3

sin 1
3

sin−1 17
64  ⇒ sin = 1

6
4

3
sin 1

3
sin−1 17

64 ⇒  = sin−1[164
3

sin 1
3

sin−1 17
64].  

Always nice to have rational results, even if we need transcendental functions to get them.

So far we have shown that the Zalgaller path is the shortest convex path of unit width.  It remains to be 
shown that it is shortest among all paths.  It may be a bit surprising that we would need to consider 
non-convex paths, since the utility of a path is based on its convex hull.  But as we shall see with 
Besicovitch, a convex path is not always the shortest way of establishing a convex hull.  A thin 
rhombus should prove sufficient example (Figure 25).
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The following reworks the argument in [1], attempting to avoid one of the issues in the original paper. 
It skips several introductory arguments and reaches their Lemma 5 differently but based on their 
original construction.  Specifically, the authors deal only with paths composed of finite numbers of line 
segments.   They indicate that they are unable to demonstrate their argument for paths with infinite 
segments, but by minor modifications we will attempt to handle non-linear segments and to eliminate 
the possibility of infinite “crossings”.  Our basic goal is also theirs – to show that a minimal arc of 
width one must contain a “convex arch of unit height”, and then that a minimal arc with such an “arch” 
must indeed be convex.

Let path P be a minimal arc of unit width.

First we make a few observations, hopefully intuitively clear (Figure 26).
• No congruent copy of the convex hull of P can be contained completely in the interior of P.
• There can be no path P' shorter than P whose convex hull is greater than or equal to the convex 

hull of P by containment, since then P' is an escape path and P is not minimal.
• Path P is divisible into subpaths lying on the convex hull of P connected by “crossings” - i.e., 

subpaths lying on the interior of the convex hull with the exception of their endpoints, which lie 
on the hull.  Segments CH and GD are crossings in Figure 26.

• Since P is minimal, all its crossings must be line segments.
• Since P is minimal, its endpoints must lie on its convex hull.  In fact, if an endpoint lies on a 

portion of the hull which is a line segment, it must lie on an endpoint of that segment.

It should also be clear that P does not intersect itself.  ([1], Lemma 3)  If a crossing terminates at a 
point on the convex hull that is already on the path, it is wasted (as AC in Figure 27).  And if two 
crossings intersect, they can be “uncrossed” to produce a shorter path (Figure 28).
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Next, define an “arch” as a continuous section of our escape path which begins and ends either with a 
“crossing” or at an endpoint of the path, and otherwise follows the convex hull.  In Figure 26,
A B C H , C H G D , andG D E F are arches.  Crossings only occur at the ends of the arch and 

do not intersect, so each arch of a path is a convex.  Define the “height” of the arch as the greatest 
distance of a point on the arch from a line passing through its endpoints.   Here, the height of
A B C H is the distance of point C from line A H , and the height ofG D E F is the distance of 

point D from G F .

Proposition 9.2: A minimal path of unit width has an arch of at least unit height.  (cf. [1], Lemma 5)

Let the endpoints of path P be labeled X and Y, and consider the arch beginning at X.  If this arch is the 
entire path, it must have at least unit height or fail to have unit width.  If, however, the first arch ends 
with a crossing AB and the height of X A B is less than one, then there must be some point A' on the 
convex hull representing the highest point on path P above line X B .  The arc A A ' of the convex 
hull must lie on or above line A A ' to preserve convexity.  Further, X A will end at A with either a 
line segment or a convex curve.  In either case, the slope of a line through A will be determined such 
that A A ' must lie on or below this line to preserve convexity.  This second line must intersect a line 
parallel to X B through A', and we may label their intersection A''.  As a result, the arc A A ' of the 
convex hull must lie in the triangular region determined by A, A', and A'' (Figure 29).

Whether the second arch of path P ends at Y or with a crossing, it must end within that triangular 
region.  Suppose that the second arch ends with the crossing CD and that again the height of the arch is 
less than one (Figure 30).  By the same logic as above, there must be a point D' at maximum distance 
from A D , and the arc C D' on the convex hull of P must lie in the triangular region determined by 
C, D', and D'', where D'' is the intersection of the line through D' parallel to A D and the tangent to 
the path at C.
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Of necessity, the slope of A D ∥ D ' ' D ' is at least that of B C which in turn is at least that of
X B .  Since therefore A D and B C do not converge to the right, the height of archA B C D

(equal to the height of C over A D  , is at least the height of B over A D , which is at least the 
height of A over B C , which finally is at least the height of A over X B (Figure 31).  (In minimal 
paths, these should be strict inequalities, but it makes no difference to the argument.)  As a result, we 
conclude that the height of archA B C D is at least that of arch X A B , and further arches must in 
turn have non-decreasing heights.  Since P is by hypothesis a minimal escape path, as long as the 
convex hull is of finite dimension there cannot be an infinite series of arches.  Therefore, P has a finite 
number of arches, but arches of less than unit height force the path to continue, so we must have at least 
one arch of unit height.

Now we will follow [1] more closely.

Proposition 9.3: A minimal path of unit width is convex.

Let P be a minimal path of unit width.  Then P has an arch of at least unit height.  If the arch is the 
entire path, it is convex and we are finished.  If not, select the arch in P of greatest height and orient P 
with its endpoints on the horizontal axis.  Since its endpoints must lie on the convex hull, P is situated 
entirely above the axis.  In Figure 32, the highest arch is A B C , X and Y are the endpoints, and R is 
the rightmost point on the path.  The dashed lines indicate sections of the path without specifying their 
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precise shape. L1  represents the last point on the arch before the crossing to C, and L2 represents 
the first point on the convex hull after L1 which is again on path P.  That is,L1C L2 is the next arch 
in the path.

Clearly L1 L2 is not parallel to AC , since then arcB L1C L2 could be replaced by the shorter
B C L2 with the same or greater convex hull.  So L1 L2 and AC intersect at some point E (Figure 

33).  This point must lie to the right of a perpendicular drawn from L1 to AC , since otherwise the 
arc L1 Y could be replaced by the perpendicular segment dropped from L1 .

We consider two cases, based on the length of L1 L2 .

Case 1: If ∣ L1 L2∣≤∣ L1C ∣, we may shorten path P and thus show a contradiction as follows. 
ReplaceL1 C L2 with L1 L2 , follow the original path to rightmost point R, and drop a perpendicular 
to point S on AC .  Since by convexity R lies on or below L1 E , ∣ R S ∣ ∣C L2 ∣, so the new 
path must be shorter (Figure 34).

Ward - 02/21/08, 01:07:33 PM Page 27 of 53

Figure 32

Figure 33



Case 2: (Here we deviate slightly in construction from [1] but reach the same objective, namely to 
show that m∢C E L1 45°.  Then we return to their proof to show that the resulting arc cannot be 
minimal.)  Suppose that ∣ L1 L2∣∣ L1 C ∣.  Then there must exist a point C ' on L1 L2 with
∣ L1C ' ∣=∣L1 C ∣.  (Figure 35)

As an exterior angle, m∢C C ' L1 =m∢E C C 'm∢C E C ' , and since triangle L1 C ' C is 
isosceles, m∢C C ' L1  90° and m∢C C ' E  90° .  Suppose ℓC L2 ≥∣C ' E ∣.  Then
ℓL1 C L2 =∣ L1 C ∣ℓC L2 = ∣ L1C ' ∣ℓC L2 ≥ ∣L1C ' ∣∣C ' E ∣ =
∣L1 E ∣, and we can replace L1 Y by line segment L1 E to produce a shorter path with a greater 

convex hull.  But then P is not minimal, so we must have ℓC L2 ∣C ' E ∣.  Then
∣C C ' ∣∣C L2∣≤ ℓC L2  ∣C ' E ∣, so m∢C E C ' m∢E C C ' , and thus
m∢C E C ' =m∢C E L1 45°.
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Next we reflect B and L2 about the horizontal axis to produce points B ' and L2 ' .  Let

r =∣ B E ∣=∣ B ' E ∣, h = ∣ B B' ∣
2 , and  = m∢A E B= m∢A E B' .  Let z denote the height of 

B above B ' E .  Then the area of triangle B E B ' can be alternately given as
r z
2 and h r cos .  

Equating and solving, we find z = 2 hcos .  By inspection, z ≤∣BC ∣∣C L2 ' ∣ =
∣BC ∣∣C L2∣ ≤ ℓB C L2.  Since h ≥ 1 , z = 2 hcos ≥ 2cos , so
ℓB C L2 ≥ 2cos .  Since 0  =m∢A E B  45° , ℓB C L2 ≥ 2cos 45° = 2 .  But
ℓX A B ≥ 1 , so ℓX Y  ≥ 12  2.414 .  This cannot be optimal since we already have a 

path with length less than 2.3.

Therefore – flourish of trumpets – a minimal path of unit width must be convex.  Since we have shown 
that the Zalgaller path is minimal among convex paths, it is minimal among all paths.  We have – 
thanks to Zalgaller, Schaer, Klötzler, Pickenhain, Adhikari, Pitman, et al. – an optimal escape path 
from an infinite strip.

- Implications -

Proposition 10 (The Zalgaller Upper Bound): If a forest F has finite width w F  , then
ℓF  ≤ ⋅w F .

If w = w F  is the width of forest F, it is contained in an infinite strip of width w, which has escape 
length w⋅ .  So ℓF  ≤ ⋅wF .  Thus  provides an upper bound on the escape length of all 
bounded and some unbounded forests.    
One might suspect that the Zalgaller path can be used for other forests.  For instance, when a 
rectangular forest has a very high width-to-length ratio, we are faced with what might as well be an 
infinite strip, and Zalgaller provides our solution.  We should at least examine  as a possible 
solution for any sufficiently “skinny” forest.
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The Zalgaller Rectangle
Rectangles form an interesting study, provided in [5].  Consider a rectangle ABCD with longer sides 
AB and DC of length  and shorter sides AD and BC of unit length.  As long as m∢ABD  30° ,
the rectangle is fat and so a line segment of length 12 is an optimal escape path.  This occurs for

1≤ ≤ 3.  For some sufficiently large value of  , we suspect that Zalgaller's path  will be 
an optimal escape.  But at what point does  become optimal, and what happens between the two 
solutions?  The surprising answer is that there is no “between”!

Proposition 11: An optimal escape from a rectangular forest is a diameter path or a Zalgaller path.

Let d =  12 be the diameter of a ×1 rectangle, and let = ℓ  be the length of the 
Zalgaller path.  Suppose d  , and choose some path P of length L  d .  Certainly, P has width 
less than one and can be positioned between AB and DC.  If P intersects both AD and BC in this 
orientation but does not intersect AB or DC, it can also be rotated so that P is still contained between 
but intersects both AB and DC.  If at this point we cannot move P horizontally to fit within the 
rectangle, it must be true that P intersects each of the sides at least once.  Then regardless of the order 
in which contact is made, length L must be at least that of the diagonal – a contradiction.  Therefore, for

d  and escape path P, we must have ℓP  ≥ d .  Since a segment of length d is, in fact, the 
only escape path of length d, it is optimal.

When d  , a path of length L   d fails as above to escape through sides AD and BC and 
cannot escape based solely on AB and DC, so an escape path must necessarily have L ≥ . Since
 is the unique minimal path of unit width, it is the unique optimal solution when d  .

This leaves us with the case where d = .  Here the minimal length is also  , but of course that 
can be accomplished either by a line segment or by  , and these are the only optimal solutions.  This 
leads to the interesting situation where, as r varies continuously, there is an abrupt change in shape of 
the optimal solution.  At the point of change the length of the optimal path ceases to increase with r and 
becomes constant.

Definition: A Zalgaller rectangle is a rectangle with diagonal-to-width ratio equal to .  
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Note that a Zalgaller rectangle has a relatively low length-to-width ratio of  = 2−1 ≈ 2.0471.  
This suggests two results:

Proposition 12 (The Zalgaller Lower Bound):  A lower bound for the escape length of a bounded 
forest F is given by ⋅wR ≤ ℓF  where R is the largest Zalgaller rectangle covered by F.

Together with our general result, this yields ⋅wR ≤ ℓF  ≤ ⋅w F .

Corollary 13: Call a forest F “skinny” if a Zalgaller rectangle R can be contained in F such that the 
two longer sides of R lie on the boundary of F.  A Zalgaller path is an optimal escape from a skinny 
forest.

Convexity requires that w R = wF  , so ⋅wF  ≤ ℓF  ≤ ⋅wF .  Unfortunately, the skinny 
forests do not form a family of very great interest.

The Isosceles Triangle: Let forest F be bounded by an isosceles triangle ABC with base B C
and legs A B≅ AC , such that the base length ∣BC ∣=  and A has unit height above B C .   That 

is, ∣ A B∣2− 2 
2

= 1 .  Immediately, we have two upper bounds on the escape length of the forest. 

Since the longest side of a triangle is its diameter, for 0  m∢A B C ≤ 60° , Diam A B C = 
and for 60° m∢A B C  90° , Diam A B C =∣A B ∣, so ℓF  ≤ max { , ∣ A B∣}.  But the 
width of the forest is no greater than its altitude above B C , so ℓF  ≤ .

Now if we embed a Zalgaller rectangle along the base (as shown), with height w and length

v = w  , we see that 
2
=
/2
1
=
/2−v /2

w
=
−v
2 w

=
−
2w

.  Then w = − , and

w = 


.  Thus, our embedded rectangle has an escape length of



, which provides a 

lower bound for the escape length of F.  Combining our bounds, we have 



≤ ℓF  ≤  .
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Clearly, for sufficiently large  , ℓF  can be made arbitrarily close to .  For example, with a 
base angle m∢B C A≈ 6.2° and  ≈ 18.43 , 0.9≤ ℓF  ≤  .  And at m∢B C A≈ 0.56°

and ≈ 203 , 0.99≤ ℓF  ≤  .  Thus we suspect that  (or something very like it) is 
optimal for  greater than some 0 .

The Ellipse: Let forest F be bounded by an ellipse with minor axis of unit length and major axis of 
length  .  Embed a Zalgaller rectangle in F as shown, and let d be the distance from the center to a 
vertex of the rectangle.

Since the proportions of the Zalgaller rectangle are fixed, the angle of the diagonal to the horizontal 

axis of the ellipse is given by  = tan−1 1


and the coordinates of the upper-righthand vertex are

x , y  = d cos , d sin.  We may write the equation of the ellipse as
x2

a2
y2

b2 = 1 where

a = 
2

and b = 1
2

.  Thus
d 2 cos2
/22


d 2sin 2
1/22

= 1 ⇒ d 2[ cos
2 

2

 sin
2 

2]= 2

24
⇒

d 2 cos22 sin2 = 
2

4
⇒ d = 

2 cos22sin2
.  Since the escape length of the 

rectangle is its diagonal, 2 d = 

 cos22sin2
≤ ℓF  ≤  .  At  ≈ 4.23 ,
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0.90≤ ℓF  ≤  , and at  ≈ 14.37 , 0.99≤ ℓF  ≤  , a considerably more rapid 
convergence than for the isosceles triangle.  Again, we suspect that something like Zalgaller is the 
optimal escape path for sufficiently elongated ellipses.
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The Besicovitch Solution

Last of the Regular Polygons  (Besicovitch, 1965)

With the “Fat Forest” result, we have optimal escape paths for every regular polygonal forest above the 
triangle.  In each of these cases, the solution is a straight line.  Perhaps the solution for an equilateral 
triangle is also linear.  After all, the fat rhombus is made up of two equilateral triangles.  And the 
equilateral triangle has the feature that its diameter is simply its side length.  And if wishes were 
horses....

In 2004, Finch and Wetzel [5] reported the status as follows:

Gross [7], however, observed that for sufficiently small  the path pictured in Figure 5a, with
∢CAB = 15° and CD = 1/3− , is an escape path for the equilateral triangle of unit side, 

and its length is less than 1.  (It is easy to see than any  with 0    0.013 works.) 
Prompted by an equivalent question posed by Graham in 1963, Besicovitch [3] found the escape 
path of length 321/14≈ 0.981981 pictured in Figure 5b, where
∢CAB= arcsin 1/28≈ 10.9° and x = 3/28 .  (He obtained his result by solving an 

optimizing equation numerically; the radical expressions were found by Steven Knox in 1994.) 
Besicovitch conjectured that this path is the shortest.  Although this conjecture is likely to be 
correct, little progress has been made toward its proof.

Just two years later, Coulton and Movshovich [4] published their proof of the conjecture, closing the 
question of the regular polygonal forests.

However, as this paper was begun, the original Besicovitch article was not easily available, Knox's 
result – “just an elementary calculus problem” done while a grad assistant to Wetzel [16] – was never 
published, and Coulton and Movshovich were not yet known to the author.  These lacunae seemed the 
perfect excuse for a little exploration.  So let us consider how one might arrive at Knox's solution, 
followed by a review of the Coulton and Movshovich proof.  (A numerical analysis, probably 
resembling that of Besicovitch, was also done but doesn't contribute to greater understanding.)
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It seems reasonable to assume that the convex hull of any escape path for the equilateral triangle must 
contact each of the sides at least once, quite possibly utilizing one of the vertices.  Following Gross' 
lead, we consider particularly paths with a quadrilateral convex hull, anticipating a zigzag path of two 
sides and a diagonal.

Consider an isosceles triangle ABC, where ABC has unit base ∣ A B ∣= 1 , height of C above AB of
∣C C ' ∣=  , and base angles ∢A B C and ∢B AC with  =m∢ABC =m∢BAC ≤ 60°.  

Note that tan = 
1/2

= 2 .  

Next let P Q R S be a convex quadrilateral hull lying inside A B C .  Suppose that vertex P of the 
hull and vertex A of the triangle are coincident.  If point R on the hull cannot reach segment BC by 
rotation, we definitely do not have an escape path and can scale the hull larger (Figure 46).
On the other hand, if R lies on BC, but both S and Q lie in the interior of the triangle, the hull can be 
rotated such that the path does not escape the triangle.  Inspection suggests that the more we can rotate 
toward one of the sides, the closer vertex R comes to either B or C.  Thus, the worst case positioning of 
a quadrilateral hull with one vertex at A will occur when the side of the quadrilateral forming the 
shallowest angle to the diagonal lies along one side of the triangle.  In the case of a parallelogram, this 
can be found simply by placing one of the longer sides of the hull along a side of the triangle.
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If our triangle is equilateral, choice of side is irrelevant.  Otherwise the long side of the hull should lie 
along the base of the triangle.  (If we consider isosceles triangles with base angle larger than 60° ,
point P will need to be coincident with vertex C instead of A.)

As a result, our goal is effectively to find point Q on AB, point R on BC, and point S somewhere above 
PR as in Figure 48 such that =∢QPR is at least as small as ∢SPR , ∢QRP , and ∢SRP .  
Such a path should definitely be an escape path.  And since we intend to establish the convex hull by a 
zigzag path, we need to find such a set of points that minimizes ∣ P S ∣∣ S Q∣∣Q R∣.

We begin by choosing an arbitrary location for R on the lower half of BC, and considering the possible 
locations for Q and S.  Since m∢RPS ≥ and m∢PRS ≥ , S must lie on or above both T R
and P S ' , where T R ∥ A B and S' lies on T R with m∢S ' PR= .  Since m∢QRP ≥ ,
Q must lie on segment Q ' B where Q ' R ∥ P S ' .

Consider first the placement of S.  If S lies above both T R and P S ' as in the figure, dropping S 
vertically to the upper of the two lines must decrease the distance ∣ P S ∣∣S Q ∣ for any fixed Q. 
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And if S lies on P S ' above T R , ∣ P S ∣∣S Q ∣=∣ P S ' ∣∣S ' S ∣∣S Q∣≥∣ P S ' ∣∣ S ' Q ∣ by 
the Triangle Inequality.  Therefore S must lie on segment TS' ifP S Q R is to be minimal.

Given Q on Q'B, what is the preferred location for S on TS'?  Instinctively we know that
∣ P S ∣∣S Q ∣ is minimized when PS ≅ SQ .  The gods favor symmetry.  A simple argument from 

calculus can be made in support of the supposition, since for  fixed base b and height h,

 x2h2b−x 2h2 is minimized when x = b
2

.  As we will see with Coulton and Movshovich, 

however, a simple “unfolding” argument is sometimes much more straightforward.   If we reflect Q 
about TR to create point Q', then ℓP S Q = ℓP S Q '  , which is obviously minimized when
P S Q ' is a line segment with the result that PS ≅ S Q ' ≅ S Q .

Just as we would like to have PS ≅ SQ , we want SQ≅QR for the same reasons.  So if
PS ≅ SQ ≅ Q R , our placement is optimal, and if not there is a better placement for S and/or Q. 

But will it always be possible to place S and Q so that the three legs of the path are congruent?  With 
reference to Figure 49, let v=∣P S ∣ be the length of each leg in the path, w =∣ P R' ∣ the 

projection of PR onto AB, and h=∣ R R ' ∣ the height of S and R above AB.  

Solving h = w tan = 1−w tan yields w = tan
tantan

, and h = tan tan 
tantan 

.   Let

m∢BQ ' R= m∢BPS ' = 2 and  =m∢BQR = m∢BPS . If S lies on TS' and Q on Q'B, then
2 ≤  ≤  . In the first quadrant it will be sufficient to verify that tan 2≤ tan ≤  .

The three legs of our path are congruent, so ∣ A S ' ' ∣=∣S ' ' Q ∣=∣Q R' ∣= w
3 and thus we need

tan = h
w /3

= 3h
w
= 3 tan≥ tan 2 = 2 tan

1−tan2
.  Then

2 tan
3 tan

= 2
3
≤ 1−tan 2 which 

implies that tan 2 ≤ 1
3 or ≤ 30°.  So for any 0°  2 ≤ ≤ 60° , there is some  in

[2 ,] yielding our zigzag path with congruent legs.
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Since our construction is possible for any  , and there is a one-to-one correspondence between the 
path's  angle and  , we may concentrate on optimizing path length for 0°  ≤  .  As

h = v⋅sin= 1−w tan and
w
3
= v cos , v⋅sin

tan
= 1−w , and so

3 v⋅cosv⋅sin 
tan

= v3 cossin
tan = 1 or v = 3cos

sin
tan 

−1

=
tan

3cos tansin 
.  We 

minimize ℓP S Q R when v is minimal, which in turn occurs when
d v
d 

=−3 cos
sin 
tan 

−2

−3sin 
cos
tan = 0 .  Since 3cossin

tan
is non-zero for

0° ≤≤ 60° , we may simplify to
cos
tan

− 3sin = 0 ⇒ cos− 3 sin tan= 0 ⇒

cos= 3 tan sin  ⇒ tan = 1
3 tan  ⇒  = tan−1 1

3 tan  .  Then we can express path 

length as the function PB  =

3 tan
9 tan2

9 tan21
 1
9 tan 21

=
3 tan 

9 tan21
.  For the 

equilateral triangle,  = tan−1 1
33 = tan−1 3

9 ≈ 10.8934° and

PB 60° = 33
28

= 321
14

≈ 0.98198105061 .

Sorry, folks – all that work bought us a little less than 2% improvement over a straight line solution!

But do we have a problem?

We should note an unexpected result in our calculations.  When  is sufficiently small,
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 = tan−1 1
3 tan  will in fact be larger than  .  The outcome is a path such as in Figure 51 with

 = 25° or even Figure 52 with  = 10°.  A quick calculation shows that our path will not fit in a 
corner of the triangle for   30°.  This suggests that a modification of the path might prove a better 
escape path, but does it invalidate our result?

The generated paths are actually optimal for the zigzag type of path originally specified, if we accept an 
endpoint lying on the extension of BC.  If we compare these results with “corrections” that require
 ≤  or even  ≤ /2 , a plot of path lengths shows that for   30° our original result is 

superior.

Besicovitch is Optimal (Coulton and Movshovich, 2006)

Finally, in 2006, Patrick Coulton and Yevgenya Movshovich [4] established that the Besicovitch 
conjecture of optimality was correct.  Wetzel [16] describes their arguments as “not deep, but in the 
aggregate...elaborate and complicated.”  As their work is readily available and somewhat lengthy, this 
paper will confine itself to presenting their results in summary, relying heavily on their original figures. 
Their own summary is as follows:

“We will prove that a class of isosceles triangle (called Besicovitch isosceles triangles) are 
worm-covers.  One of these triangles is the Besicovitch equilateral triangle.

In Theorem 5.1 we show that any polygonal arc that does not fit in a Besicovitch isosceles 
triangle is longer than 1.  This means that each Besicovitch isosceles triangle is a worm-cover. 
The proof employs a rotation of the arc between parallel lines until it assumes a special position. 
In Sects. 3 and 4 we prove that arcs of this kind are always covered when they are worms.” ([4], 
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p. 80)

Proposition 14:  Besicovitch isosceles triangles are unit-covers, and the Besicovitch path forms a unit 
escape path.

The proof begins by restricting consideration to simple polygonal arcs, claiming “if a convex set covers 
any simple polygonal unit arc it is a worm-cover.” ([4], p. 79.)  This claim appeals to a proof-in-
summary (contained in an interesting paper on “drapeability” [10]) of the assertion found in a 2003 
worm problem paper [12].

Specifically, a Besicovitch isosceles triangle T  is defined as an isosceles triangle “with base angle

 satisfying 52.24°≈ arctan 5/3≤ ≤ arctan 3 = 60° and base b = 1 1
9 tan 2

.”

For our purposes, we will consider a Besicovitch isosceles triangle T  with base angles of measure
 and base length b whose base lies on the x-axis between the origin and b ,0 .  Then the left leg 

of T  lies on the line y = m x , where m = tan , and the right leg lies on the line
y = m b−x .
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Three-Segment Arcs
We want to show that a 3-segment arc which touches all three sides of the triangle must have at least 
unit length.  We can quickly dispose of unilateral arcs, defined as those lying entirely on one side of 
the line joining the endpoints.  A unilateral 3-segment arc can be positioned with its endpoints on the 
triangle base and clearly must have length greater than the base when the base angle is greater than

45° .  Since Besicovitch isosceles triangles have base angle  ≥ arctan 5/3 45° and base

b = 1 1
9 tan 2

 1 , every unilateral arc must have length greater than 1.

Next we consider certain 3-segment arcs which begin at the origin and end at some point x , y  on 
the right leg y = m b−x .  In particular, we define a symmetric z-arc to be such an arc where each 
of the segments is of the same length and has the same altitude h above the base.

If we “unfold” such a symmetric z-arc, we obtain a line segment between the origin and the point
x ,3 y which lies on the line y = 3mb− x.  Clearly our original arc has minimum length 

(among symmetric z-arcs) if its unfolded version is orthogonal to y = 3 mb− x.  This occurs for 

symmetric z-arcs of unit length when the triangle base is b = 1 1
9 tan 2

. Thus, the minimal 

symmetric z-arc in a Besicovitch isosceles triangle has unit length, and for the equilateral triangle this 
arc is the Besicovitch path.
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A similar unfolding argument is used to show that a minimal 3-segment arc, can be straightened so that 
one endpoint lies on the line y = x tan2 and the other is perpendicular to y = 3 mb− x.  
These two lines are parallel when tan  = 5/3 and diverge for greater values of  .  Thus, for
 arctan 5/3 the symmetric z-arc will be the optimal solution, while at the critical angle 

multiple solutions are conceivable.  Therefore, a Besicovitch isosceles triangle will cover all 3-segment 
arcs of unit length.

S-arcs and W-arcs
Coulton and Movshovich define an s-arc as one having

...an initial point A = xA , yA on the base; a subsequent point B on y = m x ; a subsequent 
point C of maximum height on y = h ; a subsequent point D on the base; and a terminal point

F = xF , yF  on y = mb−x such that yF ≤ h . ([4], p. 82)
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They define a w-arc as one having

...an initial point A = xA , y A on y = m x ; a subsequent point B on the base; a subsequent 
point C on y = h ; a subsequent point D on the base; and a terminal point F on

y = mb−x such that y A yF ≤ h .

As their figures demonstrate, an s-arc can be straightened to show that its length is at least the distance 
between L1 and L2 , which have a minimum separation of 1.
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And a w-arc by unfolding and translation can be shown to correspond to an s-arc.

 
This leads to the conclusion that every s-arc and every w-arc has length at least 1.

Arcs in Standard Position
Define a −arc as lying entirely between the x-axis and y = h , with consecutive points A, B, C, 
D, F such that A and F are the endpoints, B and D lie on the x-axis, and C lies on y = h .  It is 
permitted that A = B or D = F .  A −arc is in standard position with respect to Besicovitch 
isosceles triangle T  if it touches and lies entirely on or to the right of the left side y = m x of

T  , and it touches and lies entirely on or to the right of the left side of the inverted copy T 
* of

T  whose base lies on y = h .

By careful examination of individual cases, it can be shown that any −arc in standard position 
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which is not covered by T  or T 
* must have length greater than 1, generally by showing that it can 

be replaced by a shorter s-arc or w-arc.  This leads to the result that T  must cover every −arc .

Finally, the authors show that any simple polygonal arc can be rotated so as to eventually take the form 
of a −arc .  This is then sufficient to conclude that Besicovitch isosceles triangles are worm-
covers.  Therefore, since the Besicovitch path is an escape path from such triangles (including the 
equilateral) it must be optimal.
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An Exploration

Escape Paths for Isosceles Triangles

We have calculated an optimal zigzag path for isosceles triangles, but have not claimed that the path is 
optimal among all escape paths.  In fact, Coulton and Movshovich [4] only show that the Besicovitch 
path is optimal when the congruent angles measure between about 52.24° and 60° .  What might 
happen with other isosceles triangles?

“Skinny” Triangles
Consider isosceles triangles with base angle 0°  ≤ 60°.  Again, the “base angle” will refer to the 
measure of the congruent angles, and “base” to their common side.  The height of the triangle is

tan
2

, so any path of width
tan

2
will be an escape path.  For small  , a scaled version of the 

Zalgaller path will have length PZ  =
⋅tan

2 and is certainly a good candidate for best escape 

path.

Notice that the scaled Zalgaller path must reach vertex C and takes no advantage of the sloping sides 
nearby.  This suggests a third escape path, based on the square, consisting of three congruent legs 
connected at right angles and thus forming three sides of a square convex hull.  If we consider a 
rectangle of any aspect ratio lying on the base of the triangle and with upper corners on the other sides 
of the triangle, it is clear that we minimize the length of the three-sided path establishing the 
rectangular hull by converging to a vertical line when   45° and to a horizontal line when
  45° .  However, if we optimize the path beyond the square for one orientation, it will fail to 

escape the triangle when rotated 90° .  Thus for all  the best rectangular hull is square (Figure 66). 
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In the configuration shown in Figure 66, since
1−2 x

x
= tan , we have x = 1

tan2
, and thus a 

path length of PS  = 31− 2
tan2 = 3 tan

tan2
.  However, we must also ensure that the path is 

an escape path.  It is clear that any placement with one side of the hull lying on the base of the triangle 
will escape the triangle.  It will be sufficient to verify that the path also escapes the triangle when a side 
of the hull lies on one of the other sides.

In general, where  =m∢BAC = m∢ABC and ∣ AB∣= 1 , ∣ AC ∣=∣ BC ∣= 1
2cos 

. If


4
 


2

, as in Figure 67, we consider a square lying on one of the congruent sides and 

sufficiently large to contact the other two sides.  Then
x
a
= tan ⇒ x

tan
, x

b
= tan −2 

= −tan 2 = −2 tan 
1−tan2

, and xab = 1
2cos 

.  Solving, we find 1
2cos  =

x 1tan2−2 tan 
2 tan

⇒ x = tan
cos1tan2

.  Since x must be large enough to create an 

escape in both orientations, we need
x =max { tan

tan2
,

tan
cos1tan2}.  

However, for

4
 


3

, 2
2
 cos  1

2
⇔ 2cos  1 ⇔

2 cos −2 cos sin  = 1−sin2cos   1−sin ⇔ sin2 cos  12 cossin  ⇔
tan

tan2
=

sin
sin 2cos


sin 

12 cos sin 
=

sin
cos sin2

=

sin
cos21tan 2

=
tan

cos1tan 2
.
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If 0   ≤ 
4

, as in Figure 68, we have a = x
tan and xa = x 1tan 

tan  = 1
2cos

⇒

x = tan
2cos1 tan

.  In all, then, we need x = tan
cos1tan2

when  

4

, and

x =max { tan
tan2

,
tan 

2cos1tan } when  ≤

4

.

The results are illustrated in Figures 69 and 70.  The path length is given by
3 tan

tan2 for 

approximately 0   ≤ 39.1° ,
3 tan 

2cos1tan 
for 39.1° ≤ 

4
, and

3 tan
cos1tan2

for


4
 ≤


3

.
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Among the three path functions – Besicovitch, Zalgaller, and square – for 0°  ≤ 60° , we find that 
the Zalgaller path is minimal for approximately 0°   32.36° , the square path for

32.36°  41.34° , and Besicovitch for 41.34°≤ ≤ 60° .  See Figures 70 and 71.

Some numerical experiments indicate that the results for the square can be improved slightly by 
increasing the lower base to form a path with an isosceles trapezoidal convex hull.  This leads to 
shorter path lengths and a slightly larger range over which the path surpasses Zalgaller and Besicovitch. 
Which leads us to the following conclusion.

Proposition 15:  There exists at least one more type of solution for bounded forests.

We know that for certain isosceles triangles, the optimal escape path – whatever it turns out to be – is 
not linear, Zalgaller, or Besicovitch.

It is interesting that the Zalgaller path bears some resemblance to a triangle and thus a degenerate 
trapezoid.  Could there be some larger class (perhaps “Zalgalloids”) containing the  Zalgaller path as 
one instance, which is optimal for these isosceles triangles?
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“Fat” Triangles

For isosceles triangles with 60°  90° , the situation changes slightly.  For the Besicovitch path, it 
is no longer sufficient to place the zigzag across the unit base, since the same path would fit in the apex 
at C and no longer be an escape path.  For a corrected Besicovitch length, we need to scale the path 

length based on the longer side as a base.  Since ∣ AC ∣= 1
2 cos

, our modified function is

QB =
3 tan

2cos9 tan21
.  And as the path length must traverse a long side of the triangle, we 

expect increasingly poor results as  grows.

The Zalgaller path requires similar scaling, but varies with sin rather than the inverse of cos .
As a result, the path grows much more slowly and converge to the unit width  as  approaches

90° .   The height of the triangle measured from its longer bases is sin , so
QZ  ≈ 2.278291644 sin.  It is possible that the path can be scaled down further because of the 

position with respect to the altitude of the triangle, but this has not been investigated.

The square path is not affected by the growth of  , so Q S = PS  =
3 tan 

tan 2
.
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Comparing the three paths for 60°  90° , we see a reverse of the pattern for the smaller angles. 
The Besicovitch path is minimal (among the three) for approximately 60°  75.356° , the square 
path for 75.356°  80.487° , and the Zalgaller path for 80.487° ≤ 90° .
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A Brief History of Results

The following sketch of the problems' history is based on Wetzel and Finch's 2004 “Lost in a Forest” 
[5], and a recent letter from Wetzel in Geombinatorics [15].

• 1956 – Bellman [2] asks, given a forest of known dimensions, for the shortest escape path.  The 
problem was originally posed for an infinite strip of constant width and for a half-plane with 
known distance from the boundary.

• 1955 – Gross [7] solves the circular disk and comments on other forests.  (Clearly Bellman had 
been talking about the problem before his original publication.)  This may have included his 
observation on the equilateral triangle that foreshadowed the Besicovitch solution.

• 1957 – Isbell [8] solves the half-plane.
• 1961 – Zalgaller [19] solves the infinite strip.  The solution will be rediscovered and the path 

renamed several times.
• 1965 – Besicovitch [3] refines the observation by Gross regarding the equilateral triangle and 

offers a numerical solution which will eventually prove to be optimal.
• 1968 – Schaer, in a University of Calgary research paper, shows the Zalgaller path is optimal. 

The path is dubbed the broadworm, since it has the greatest possible width-to-length ratio.
• 1973 – Poole and Gerriets show that the solution for a 60-degree rhombus is linear.  Their 

preliminary letter [13] is followed by a more thorough proof [6] in 1974.  This result establishes 
the class of “fat” forests.

• 1986 – Klötzler and Pickenhain rediscover the Zalgaller path, this time naming it the universal  
escape path (which it clearly is not).

• 1989 – Adhikari and Pitman [1] discover yet again the Zalgaller path, descriptively calling it the 
caliper.

• 1994 – Stephen Knox, while a graduate student, provides an algebraic representation for the 
Besicovitch path.

• 2004 – Finch and Wetzel [5] publish an article reviewing results to date.
• 2006 – Coulton and Movshovich [4] publish their proof that the Besicovitch path is indeed 

optimal for equilateral triangles and an additional range of isosceles triangles.
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